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Papers [1, 2] were devoted to questions of the stability of the laminar
flow of a conducting fluid in a transverse magnetic field with Hartmann
flow. It was assumed in these papers, however, that the transpost co-
efficients are quantities independent of the flow characteristics; in
particular, the temperature and the effect of energy dissipation were
not taken into account. When these factors are allowed for it turns
out that even for relatively small subsonic velocities, when the medi-
um may be regarded as incompressible, the temperature distribution
exerts a considerable influence on the dynamic flow characteristics.
Papers [3,4] deal with this type of flow in an MHD channel which will
be called nonisothermal in what follows. It has been shown that under
specific conditions the velocity profiles are grossly deformed, and non-
monotonic profiles with inflection points may even appear.

However, the influence of nonisothermal flow on stability is not con-
fined to an alteration of the stability criteria as a result of the change
in the velocity profile. When energy dissipation and the fact that the
trapsport coefficients are not constant are taken into account new
"dissipative” instability branches appear, as, for example, the over-
heat instability [5, 8]. This article considers the problem of the hydro-
dynamic stability of a nonisothermal plasma flow in constant crossed
electric and magnetic fields in a flat channel with dielectric walls.
The system of equations derived in this paper for the perturbations does,
of course, take into account all the instability mechanisms mentioned
above, but is difficult to solve. The general system of equations may
be investigated in two limiting casées corresponding to the overheat and
hydrodynamic instabilities,

1. Initial Steady State. Let the x axis be in the di-
rection of the flow and the y axis be in the direction
of the external magnetic field By, whilethe z axis is
in the direction of the constant electric field E. The
channel is bounded by dielectric walls situated at
y =+ [, while the distance between the electrodes in
the z direction and the length of the channel in the x
direction are assumed to be quite large. It is also
assumed that weTe < 1, i.e., scalar magnetohy-
drodynamics may be used. The transport coefficients
as functions of temperature are approximated by the
following power laws:
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which is permissible if these parameters are mono-
tonic functions of the temperature of the medium, and
the temperature within the MHD channel undergoes
only limited changes. Assuming that all quantities
are functions of y only we arrive at the following sys-
tem of equations describing the initial steady state:
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which must be solved for the boundary conditions
U(xl)=0T(+1)="T,. 1.3)

The system of Egs. (1.1)-(1.3) may only be solved numerically in
the general case. This was done in paper [4], and the results will be
employed in what follows. Since we are unable to discuss the proper-
ties of the steady state solution in detail, we shall merely remark that
the simplest formulation of the problem was chosen when the heat dis-
sipated in the channel passes out through the walls which are maintained
at the same conditions. The solution of the steady state problem for U,
T, and j depends on six dimensionless parameters: o, 8, ¥, K, M, N,
i.e., it is of the form

U=U(; a8 1 K, M, N)
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Here M is the Hartmann number, K is the dimensionless electric
field, and N is 2 thermal parameter. The induced magnetic field B,
depends on the magnetic Reynolds' number R, in addition te these
parameters,

2. The Linearized Equations for Small Perturba-
tions. In accordance with Squire's theorem [9] one is
usually confined in hydrodynamics to considering two-
dimensional perturbations which determine the least
value of the critical Reynolds' number. Although
Squire's theorem in magnetohydrodynamics has been
proved only for flow in a longitudinal magnetic field
[10], the present case will also be considered for the
sake of simplicity,

The equations for the perturbations are obtained
in the usual way by linearizing the general equations
of magnetohydrodynamics in the region of the steady
state described by Egs. (1.2). It is convenient fo in-
troduce stream functions for the velocity and mag-
netic field perturbations,
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and the quantity ® = T'/T in place of the temperature
perturbation T'. We thus obtain a system of linearized
equations in dimensionless form:
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Here R is the Reynolds number, A is the Alfven
number, R is the magnetic Reynolds number, P is
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the Prandtl number, Uis the velocity of the unperturbed
flow, Bis the unperturbed magnetic field, T is the unper-
turbed temperature, while ¢, », 1 are the electrical
and thermal conductivity and viscosity in the unper-
turbed flow, The primes denote differentiation with
respect to y.

As usual the solution of the system is written in the
form

Y =1V (y) expik(z — ct), (2.5)

where k is the dimensionless wave number and kc is
the dimensionless frequency of the oscillations. Equa-
tions (2.2)—(2.4) must be solved for the following obvi-
ous conditions:

Y(ED =Y (1) =0 O(L1)=0. (2.6)
The boundary conditions for the magnetic field in
the case ofnonconducting walls have the form

(9'/9)s1 = F k. 2.7)

If system (2.2)=(2.4) is not separable, then hydrodynamic, electro-
dynamic, and thermal effects exert a simultaneous influence on the
stability.

3. The Overheat Instability, We shall first of all
consider the case S < R, where S = M*/R is the hy-
dromagnetic interaction parameter. Clearly in this
case field perturbations caused by the motion of the
medium may predominate over velocity perturbations
caused by the field. In the limit for A = 0 for y=0
we may imagine a situation when the velocity pertur-
bations also tend to zero, and the terms containing y
in Eqgs. (2.3), (2.4) maybe neglected. If we make the

further assumption that R, << 1, then we have from
2.3)

A® = aB,/0, (3.1)

Using (2.4), (2.5), and (3.1) and neglecting for sim-
plicity the contribution of viscous dissipation and the
fact that % is not constant, we obtaln, after making
formal transformations,
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The problem thus becomes one of finding the eigenvalues of the
Schrédinger equation with a complex potential V. If the initial steady
state is symmetric with respect to y, then it is not hard to see that
ReV is a "potential well,” and ImV hasthe form of a hump. The poten-
tial may be expanded in a series to give the Schradinger equation for
a harmonic oscillator in the region of the axis of the channel. Having
thus ascertained that finite solutions exist [11], we may employ simple
approximate methods in order to investigate (3.2). For example in the
quasi-classical approximation we replace d/dy by iky and obtain the
stability criterion immediately (in dimensional form):
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Formula (3.3) was obtained previously for the general case in paper
7], but the question of the existence of finite solutions was not consid-
ered, The presence of the factor o in inequality (3,3) prompts us
to call the instability an overheat imstability [8, 7]. For simplicity we
shall restrict ourselves to considering the case S Ry < 1 in the quasi-
classical approximation. A similar analysis may be carried out without
this last restriction.

4. Hydrodynamic Instability, We shall now con-
sider the other limiting case in which the instability is
caused by the purely hydrodynamic mechanism of
the untwisting of the velocity gradient vortex. It is
well known that the onset of hydrodynamic instability
occurs for fairly large Reynolds numbers R. We
may therefore neglect the small terms in the right-
hand side of (2.2), retaining, however, the old deriv-
ative. Further we shall confine ourselves to the case
Rm <« 1, where we can neglect terms containing BX
compared with By. From Eq. (2.3) we have

" —Ke = — R, o + aB.O. (4.1)

If the hydromagnetic interaction parameter S «
« 1, i,e., the Hartmann number is not very large,
then we may eliminate ¢ from (2.2) using (4.1) and,
neglecting small terms, finally arrive at a problem
which is one of finding the eigenvalues for an Orr-
Sommerfeld type equation

U =)y —&$)—U" = 'J{I.T Wy (4.2)

with boundary conditions (2.6). Thus for Ry, <« 1, 8 <«
< 1, oS < 1 themagneticfieldand nonisothermalnature
of the flow exert an indirect influence on the stability
of the motion, altering the velocity profile and intro-
ducing a viscosity profile into Eq. (4.2). In order to
solve the problem we use the familiar Heisenberg-Lin
method [9]. We shall, as usual, confine ourselves to
treating even perturbations over the channel half-
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width (=1,0). Two particular solutions, accurate to
terms of the order ~kR)™, may be obtained from the
inviscid equation by an expansion in powers of k2.
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Two more fundamental solutions are found in con-~
verging series from the full equation (4.2} and with an
accuracy to terms of the order ~ (kR)"‘/"‘, have the
form
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Here H®™? are Hankel functions, and yg is de-
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termined from the equation U(yy) = ¢. Knowing the
fundamental system of solutions (4.3}, (4.4), it is not
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difficult to obtain the characteristic equation for de-
termining the curves of neutral oscillations

Foy=88  g=wind), @5

where F(z) is a tabulated function [9],
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the accuracy by a few percent,
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Equation (4.5) is convenieni for numerical calculations. However,
even before calculations are performed some qualitative conclusions
may be drawn from an analysis of the velocity profile, It was shown
by Lock [1] that as the Hartmann number M increases, so also does the
critical value of the Reynolds number Ry, i.e., the flow is stabilized.
In other words, monotonic, fuller velocity profiles correspond to higher
values of R,. Since the conductivity increases with the temperature in
a plasma, the ponderomotive force increases at the center of the stream
where the temperature is higher, which leads to an additional flatten-
ing of the velocity profile in the case of nonisothermal flow [4]. Thus
an increase in R, may be expected, and the larger the index o and the
larger the current flowing in the plasma, the stronger this effect will be.

Figures 1 and 2 present curves of the neutral oscillations for values
of N=1, 5, respectively, inthe case of a fully ionized plasma (o« =3/2, B =
=y = 5/2. The numbers on the curves indicate the value of M. It
should be noted that for M > § it is no longer convenient to calculate
the curves by the method used here as a result of the worsening of con-
vergence of the expansion in &, For the sake of comparison with the
results of paper [1], the calculations were carried out for a flow con-
figuration with zero total current. Figure 3 shows R*/3 as a function of
M for the flow configurations indicated (the dashed line corresponds to
the results of [1]). Comparison of the curves leads to the conclusion
that additional flow stability results from nonisothermal effects for
M < 5, while the difference in the values of R decreases as M increases.,
This is explained by the fact that for a given N the difference in the
velocity profiles for isothermal and nonisothermal flow decreases as M
increases [4]. It is aiso worth noting that R as a function of M increases
less rapidly the greater N is, so that it is even possible for the curve to
intersect that corresponding to the isothermal case. However, special
care is required to determine the stability criterion for M > 5.

In conclusion we note that in the case of nonisothermal flow of a
liquid metal the neutral curves may behave in a radically different
way, since the conductivity of the metal decreases as the temperature
increases and nonisothermal effects lead to a more extended velocity
profile.

The author is most grateful to V. Kalitenko for
writing the computer programs and to 8. Filippov
for advice and discussions.
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